9.1.- Aplicación de las Leyes de Afinidad

La aplicación directa de las Leyes de Afinidad representa una aproximación inicial del diámetro requerido en el impulsor en un caso determinado. Los resultados de evaluaciones y de pruebas muestran diferencias entre el diámetro calculado y el rendimiento real logrado luego del corte, la experiencia indica que la diferencia es mayor respecto al valor calculado teóricamente, cuanto mayor es el corte realizado.

Esta diferencia puede llegar al 20% de lo calculado, en pocas publicaciones se hace referencia a esta situación llegando muchos usuarios a cometer errores que terminan dañando los equipos y causando perturbaciones en las operaciones.

Esto ocurre porque la Eficiencia hidráulica del impulsor se reduce como consecuencia del corte reflejado en una caída de Cabezal influenciado principalmente porque aumenta la inestabilidad del fluido a la salida del impulsor, por la mayor distancia que debe recorrer el fluido hasta la lengüeta de la carcasa, por la relación entre la velocidad del fluido a la succión y la velocidad del fluido a la descarga de la bomba que no es contemplada en las Leyes de Afinidad.

En la figura N° 9-1 se muestra las curvas de corrección del diámetro calculado vs. el diámetro real corregido, ambos expresados en %.

Figura N° 9-1.- Gráfica para la corrección de los diámetros a partir de las Leyes de Afinidad.
Figura N° 9-1.- Gráfica para la corrección de los diámetros a partir de las Leyes de Afinidad.
Fuente: STEPANOFF,A. J. Flow Pumps Design and Application, John Wiley & Sons, Inc, 2da edition, 1957.

La forma de utilizar el gráfico es la siguiente:

  • Con las Leyes de Afinidad se determina el nuevo diámetro requerido para la aplicación especificada, partiendo del diámetro de impulsor originalmente instalado en la bomba centrífuga.
  • Con el nuevo diámetro se determina el % de reducción, dividiendo por el diámetro original.
  • Usando el porcentaje de reducción obtenido se entra en el eje horizontal (Diámetro Calculado) de la gráfica de la figura N° 9-1y se desplaza verticalmente hasta cortar la curva de corrección.
  • Las curvas de corrección son para impulsores Radiales con Velocidades Específicas (NS) entre 500 y 1.000 y una curva para impulsores tipo Francis con NS entre 1.000 y 5.000. Para Velocidades Especificas por arriba de 5.000 no se contemplan correcciones directas, ya que son impulsores de flujo mixto y axial.
  • Desde la curva de corrección correspondiente al impulsor de la bomba se debe desplazar horizontalmente hasta cortar el eje horizontal (Diámetro Corregido) y se determina el % del diámetro del impulsor requerido.
  • Este valor es el % del diámetro real al cual se debe cortar el impulsor.

Por ejemplo: si el porcentaje calculado de reducción en el diámetro es del 80%, usando la curva de corrección de la figura N° 9-1, para impulsores tipo Francis observamos que realmente la reducción del diámetro se debe dejar al 85%, es decir un 5% por arriba del diámetro calculado para lograr el rendimiento deseado.

En números concretos si tenemos un impulsor de 10 pulgadas, y calculamos que la reducción debe ser del 20%, es decir el impulsor quedaría con el 80% del diámetro original tendríamos un nuevo diámetro de 8 pulgadas como diámetro final a maquinar, sin embargo si evaluamos el resultado con la curva presentada en la figura N° 9-1, resulta que el diámetro corregido es de 85%, es decir que él % a maquinar es del 15% de diámetro original, quedando el diámetro final del impulsor en 8,5 pulgadas. Lo que quiere decir que si cortamos el impulsor en base a las Leyes de Afinidad el impulsor tendría un déficit en el Cabezal desarrollado de al menos 5% del valor calculado con las ecuaciones. Por esta razón muchos cálculos usando las Leyes de Afinidad resultan errados y llevan a la pérdida total del impulsor debido a que no se puede lograr el rendimiento prometido inicialmente, porque el diámetro del impulsor es cortado excesivamente y luego de cortado es imposible la restitución del diámetro original del componente.

Acerca del autor de este libro:

José Miguel Acosta Pérez

José Miguel Acosta Pérez, es Ingeniero Mecánico egresado de la Universidad Simón Bolívar (USB) (Venezuela-1982); Especialista en Equipos Rotativos, Universidad Simón Bolívar (USB) (Venezuela-1990), Especialista en Gerencia de Proyectos, Universidad Católica Andrés Bello (UCAB) (Venezuela-2001), Especialista en Equipos para Producción de Petróleo On and Offshore, Universidade de Iguazu (UNIG) (Brasil-2010). 

E-mail de contacto: jose.acosta_pumpbook.com.br

CAPÍTULO 1
INTRODUCCIÓN

1.1.- ¿Qué es una Bomba?
1.2.- ¿Qué son las Bombas Centrífugas?

CAPÍTULO 2
PARTES DE UNA BOMBA CENTRÍFUGA

2.1.- Impulsores
2.2.- Eje
2.3.- Carcasa
2.4.- Anillos de Desgaste
2.5.- Cojinetes
2.6.- Sellos Mecánicos

CAPÍTULO 3
¿CÓMO LAS BOMBAS CENTRÍFUGAS TRANSMITEN LA ENERGÍA A LOS FLUIDOS?

3.1.- Cabezal Total de una Bomba Centrífuga
3.2.- Sistemas Asociados a las Bombas y sus Características
3.3.- Potencia y Eficiencia en las Bombas Centrífugas

CAPÍTULO 4
CURVAS DE RENDIMIENTO DE LAS BOMBAS CENTRÍFUGAS

4.1.- Forma de la Curva de Rendimiento
4.2.- Diseño Hidráulico de las Bombas Centrífugas

CAPÍTULO 5
CEBADO DE LAS BOMBAS CENTRÍFUGAS

5.1.- Cebado Manual con Válvula de Pie
5.2.- Cebado con Tanque de Cámara Simple
5.3.- Cebado por Succión Positiva
5.4.- Cebado con Eyectores
5.5.- Cebado con Bombas de Vacío

CAPÍTULO 6
CARACTERÍSTICAS DE SUCCIÓN DE UNA BOMBA CENTRÍFUGA

6.1.- Como se Determina el NPSHA
6.2.- Como se Determina el NPSHR
6.3.- Como Mejorar el NPSHA de un Sistema de Bombeo
6.4.- Fenómeno de Cavitación

CAPÍTULO 7
OPERACIÓN CON LÍQUIDOS VISCOSOS

CAPÍTULO 8
FLUJO MÍNIMO

8.1.- Flujo Mínimo Térmico
8.2.- Flujo Mínimo Continuo

CAPÍTULO 9
LEYES DE AFINIDAD

9.1.- Aplicación de las Leyes de Afinidad
9.2.- Ajustes en los Impulsores Luego del Corte

CAPÍTULO 10
OPERACIÓN CON MÁS DE UNA BOMBA

10.1.- Bombas Operando en Paralelo
10.2.- Bombas Operando en Serie

CAPÍTULO 11
PARTES Y SISTEMAS ACCESORIOS PARA LAS BOMBAS CENTRÍFUGAS

CAPÍTULO 12
COJINETES

12.1.- Cojinetes Radiales
12.2.- Cojinetes de Empuje

CAPÍTULO 13
LUBRICACIÓN

13.1.- Tipos de Lubricación
13.2.- Lubricación con Grasa
13.3.- Lubricación con Aceite

CAPÍTULO 14
ACOPLAMIENTO

14.1.- Acoplamientos de Engranajes
14.2.- Acoplamientos de Rejilla de Agarre Continuo
14.3.- Acoplamientos Elastoméricos
14.4.- Acoplamiento Flexible de Láminas Metálicas

CAPÍTULO 15
SELLADO DEL EJE

15.1.- Caja de Sellos
15.2.- Empaquetaduras
15.3.- Sellos Mecánicos

CAPÍTULO 16
MATERIALES DE FABRICACIÓN

16.1.- Materiales de Acuerdo con el ASME B73.1
16.2.- Materiales de Acuerdo con el API 610
16.3.- Otras Consideraciones

CAPÍTULO 17
INSTRUMENTACIÓN Y CONTROL

17.1.- Control por Regulación de Flujo
17.2.- Control por Recirculación
17.3.- Control por Variación de Velocidad
17.4.- Otras Consideraciones para el Control de Flujo

CAPÍTULO 18
MOTORES ELÉCTRICOS

CAPÍTULO 19
VIBRACIÓN MECÁNICA EN BOMBAS CENTRÍFUGAS

19.1.- Como se Miden las Vibraciones y Como son Interpretadas
19.2.- Que Dicen el Asme B73.1 Y el API 610 Sobre Vibración
19.3.- Causas de las Vibraciones en las Bombas Centrífugas

CAPÍTULO 20
PRINCIPALES TIPOS DE BOMBAS CENTRÍFUGAS

20.1.- Bomba de Succión Frontal
20.2.- Bomba Vertical en Línea
20.3.- Bombas Horizontales Multietapas
20.4.- Bomba Doble Succión Axialmente Partida, Entre Cojinetes
20.5.- Bomba Vertical Tipo Turbina

CAPÍTULO 21
CARACTERÍSTICAS GENERALES DE LAS BOMBAS CENTRÍFUGAS

Suscríbete a Predictiva21

×

Hola

Haz clic en nuestro representante para hablar por WhatsApp o escríbenos al correo contacto@predictiva21.com

× ¿Cómo podemos ayudarte?