Look to new technologies as Projet economics shift: Laser Scanning, 3D Modeling and Data Visualization technologies provide a solid ROI when designing, building or upgrading new or existing facilities

Thanks to the fast-pace of innovation, today’s EPC firms, as well as project owners and operators, enjoy access to design, modeling, and data visualization solutions that were unimaginable decades ago, when many existing oil and gas operations were brought online. And while the convenience and sheer problem-solving ability of these technologies are not lost on the people that wield them, it’s also important to recognize how relevant they can be in today’s economic environment.

As in downturns past, priorities and resources are being reshuffled with a greater emphasis on value. In these situations, it is not uncommon for resources that were once allocated to new projects to be applied to existing, older infrastructures that can, with relatively little investment and risk, produce greater efficiencies and returns – often in the form of upgrades, revamps and the incorporation of new technologies.

There is, however, a technological gap when it comes to existing facilities, especially if they came online prior to or in the earlier stages of computer aided design (CAD). There is the possibility that considerable changes could have occurred since the facility started operations, and the available as-built plans may no longer represent the actual installation. Also, digital construction plans may not be available, or original physical blueprints could have suffered deterioration or been lost. This problem is compounded and the risks increase exponentially whenever operational data, maintenance records and non-destructive testing results are kept in silos by individuals or in separated areas within the plant.

This is where one group of technologies in particular – Laser Scanning, 3D Modeling and Updated Data Visualization – can really help justify a project’s dollars and cents. Compared with the traditional system of generating as-built data conditions, field drafting and physical measurements, this automated technology can meet the same requirements at a fraction of the cost and time, all while eliminating human error. The traditional modeling process is replaced with an automated laser scan that can create a 3D model of the plant environment in a matter of minutes.

The benefits are countless with a platform where you can access the physical asset in a 3D environment, while the engineering data linked to each component is displayed, in addition to the current operating condition of the particular component being analyzed. Consider the possibilities, for instance, if you can visualize the results of a Risk Based Inspection displayed over the 3D model, or the plant components that must be updated or replaced within the next 6 months of operation before a risk event takes place. The time saved, productivity gained, and downtime minimization are just the tip of the iceberg in terms of benefits.

Today, computer software makes it possible to design and model all the systems that are part of a process plant in three dimensions, while linking operational data – essentially, a fourth dimension of modeling. The 4D Modeling and Visualization Concept is applicable throughout the entire life cycle of a plant; whether you are designing a new plant, or dealing with an old existing plant, the concept is equally applicable. 4D visualization concepts can be implemented along the different stages of the project such as during the design phase, construction, operation or even during decommissioning. To gain a competitive advantage, plant owners and operators must adopt the new trend of online monitoring of plant components, including real-time transmission of 3D model updates for online access by plant personnel and other key stakeholders.

4D Technology benefits throughout the project life cycle

Engineering Stage

Currently, most engineering firms use CAD design tools to produce 3D models where engineering attributes are natively embedded. This, however, has a considerable limitation: the design process typically involves a considerable number of third parties such as technology providers, equipment suppliers, materials suppliers, manufacturers, inspectors, etc., all of which generate a wealth of information in the form of technical data, catalogs, vendor drawings, operational data sheets and other related information. All of this data is highly valuable and is required during the construction, start-up and commissioning process. However, it remains isolated from the 3D model components and, in many instances, is lost at the end of the EPC process. 4D visualization solutions solve these issues by integrating key data into the model itself, reducing costs and risks while improving efficiency.

Construction Stage

The human mind works considerably faster and generates a wider range of innovative solutions to problems when working on a 3D environment. Planning civil construction, mechanical assembly or piping installation over a 3D model, while linking each activity to a construction schedule, provides much greater insight with respect to project management than the traditional approach. The implementation of building information modeling and 4D visualization allows standardization of many other project management activities, including progress measurement, quantification of executed work, change orders management, fabrication control, claims prevention, testing and quality assurance. This reduces the probability of error, mitigates project litigation and improves the overall efficiency of construction.

Constantly updating the design model and implementing the process to gradually convert it into the as-built model generates extraordinary benefits during the start-up, testing and plant commissioning process.

Operation & Maintenance

When all the participants of the O&M process have access to the latest information, including non-destructive testing results, corrosion conditions, new operational data, components performance, risk conditions, remaining life of a component, and many other typical outputs over a single and unique 3D environment, the potential for error is completely mitigated and loss prevention is enhanced dramatically.

Within the near future, real-time transmission of online monitoring data via RFID, WiFi, SCADA or direct communications will be an industry standard. The reduction of human error and the prevention of mechanical failure will generate savings of billions of dollars in operational costs, without considering the benefits associated to increased output and efficiency.

Laser Scanning Techniques, Cloud Point Data generation, and 3D Models with engineering and O&M data linked in real time are the future of the Energy Sector. These technologies will reshape the way in which engineers, designers, plant owners and operators will be working in the near future. The skills and expertise of engineering firms must be enhanced to address such potential and create added value for their clients.

Author: Jairo Fernández
President of Eddox – a Vepica Partner

0 comentarios

Enviar un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Edición 29 Predictiva21

ver todas las ediciones

Suscríbete a Predictiva21

Síguenos en Linkedin

Sistemas de Indicadores (KPI) para Evaluar la Gestión del Mantenimiento

  • Sistemas de medición del desempeño en mantenimiento
  • Balanced scorecard y la gestión de mantenimiento
  • Indicadores técnicos de mantenimiento
  • Overall equipment effectiveness (OEE) y el mantenimiento
  • Indicadores de la SMRP y de la EFNMS- en 15341
  • Sistema jerárquico-funcional de indicadores para mantenimiento

Taller de Análisis de Criticidad (Detección de Oportunidades)

  • Fundamentos del Análisis de Criticidad
  • Pasos para la realización de un Análisis de Criticidad
  • Modelos Cuantitativos
  • Modelos Cualitativos
  • Modelos Probabilisticos
  • Selección de Matriz de Criticidad

Fundamentos Técnicos de Tribología y Lubricación

  • Conocer los fundamentos de tribología y lubricación, así como su uso y aplicación.
  • Importancia de la Lubricación para mejorar la confiabilidad en los procesos.
  • Conocer características de los diferentes productos empleados en lubricación y criterios de uso.
  • Conocimientos para facilitar un proceso de cambio en el enfoque de mantenimiento.
  • Identificar el vinculo Mantenimiento-Lubricación-Diseño.
  • Identificar que una adecuada Lubricación contribuye en ahorrar energía y reduce costos.

Auto Evaluación de Mantenimiento

  • Formación del Comité de Análisis y Diagnostico.
  • Establecimiento de parámetros para evaluar el mantenimiento.
  • Elaboración y aplicación de cuestionarios.
  • Principios y reglas de investigación eficaz.
  • Grado de madurez del área de mantenimiento.
  • Establecimiento da la Matriz de Esfuerzos versus Impacto.

Análisis de Costo de Ciclo de Vida LCC

  • Comprender la teoría del Análisis del Costo del Ciclo de Vida acorde a las normas ISO 15663 y UNE EN 60300-3-3 para la selección de alternativas económicas.
  • Evaluar el impacto económico de la Confiabilidad y de la Mantenibilidad en los costos de ciclo de vida de un equipo industrial.
  • Identificar los puntos de atención, barreras y debilidades relacionados con la utilización de las técnicas de Análisis del Costo del Ciclo de Vida y Evaluación Costo Riesgo Beneficio.
  • Determinar la Vida Útil Económica para decidir cuándo es el momento oportuno para reemplazar un activo físico instalado en una planta industrial.

Gestión y Optimización de Inventarios para Mantenimiento

  • Aspectos claves en gestión de inventarios
  • Clasificación de inventarios en mantenimiento
  • Análisis de Criticidad jerarquización de repuestos
  • Cantidad económica de Pedido
  • Indicadores en la Gestión de Inventarios

Generación de Planes Óptimos de Mantenimiento Centrado en Confiabilidad RCM

  • Fundamentos del MCC
  • Desarrollo del MCC
  • Beneficios del MCC
  • Desarrollo del AMEF
  • Generación de Planes de Mantenimiento

Planificación, Programación y Costos de Mantenimiento

  • Modelo de la Gestión de Mantenimiento
  • Sistemas indicadores de la Gestión
  • Planificación del Mantenimiento
  • El sistema de Orden de Trabajo
  • Análisis de Mantenibilidad
  • Programación del Mantenimiento

Técnicas de Análisis de Fallas y Solución de Problemas a través del Análisis de Causa Raíz RCA

  • Fundamentos del falla
  • Modos de falla
  • Tipos de falla
  • Análisis Causa Raiz
  • Tipos de ACR
  • Aplicación de ACR con Árbol Logico
  • Jerarquización de Problemas
  • Desarollo de Hipótesis
  • Evaluación de resultados

Análisis de Confiabilidad, Disponibilidad y Mantenibilidad (RAM)

  • Definiciones y conceptos.
  • Relación de un análisis RAM con la vida del activo.
  • Información requerida para realizar un análisis RAM.
  • Etapas para efectuar un análisis RAM.
  • Construcción del modelo en el análisis RAM.
  • Ajuste de distribuciones de probabilidad.
  • Incorporación de la opinión de experto.
  • Combinación de fuentes (Teorema de Bayes).
  • Simulación Montecarlo.
  • Análisis de Resultados.
  • Jerarquización de activos según criticidad.

Mantenimiento Productivo Total (TPM)

  • Evolución del mantenimiento.
  • Objetivos del TPM.
  • Eficiencia operacional global.
  • Pilares de sustentación del TPM.
  • Implementación del TPM.
  • Evaluación de la eficacia de los equipos.
  • Control administrativo (Las 5 S – housekeepig).

Introducción a la Confiabilidad Operacional

  • Los fundamentos de confiabilidad, así como su uso y aplicación.
  • Visión de Confiabilidad Operacional como estrategia para mejorar la confiabilidad en los procesos
  • Conocimientos para facilitar un proceso de cambio del enfoque de mantenimiento hacia un enfoque de Confiabilidad Operacional, que apunta hacia la reducción sistemática en la ocurrencia de fallas o eventos no deseados en los Sistemas.
  • Obtener criterios para aplicar la estrategia de Confiabilidad Operacional.
  • El diseño de estrategias y la selección de acciones técnicamente factibles y económicamente rentables en minimizar la ocurrencia de fallas.

Mantenimiento por Condición para Equipos Estáticos y Dinámicos (Mantenimiento Predictivo)

  • Mantenimiento por monitoreo de condición
  • Estimación de intervalos P-F
  • Costo riesgo beneficio
  • Planes de Monitoreo de Condición

Mantenibilidad y soporte a la Confiabilidad Operacional

  • Conocer conceptos que soportan el enfoque de Mantenibilidad.
  • Importancia de la Mantenibilidad para mejorar la confiabilidad en los procesos.
  • Entender y comprender los factores que influyen y afectan la Mantenibilidad en las operaciones.
  • Diferenciar función y funcionalidad para aplicar mejoras.
  • Identificar que una adecuada valoración de Mantenibilidad permite aumentar la rentabilidad.
  • Identificar el vinculo Mantenibilidad-Disponibilidad.
  • Mantenibilidad y los factores: personales, condicionales, del entorno organizacional y ambientales.

Análisis de Vibración Nivel I

  • Fundamentos de las vibraciones Mecánicas
  • Características de la vibración
  • Tipos de medición de vibración
  • Posición para medir vibración
  • Sistemas de monitoreo continuo y portátiles de vibración
  • Criterios para la selección de un sistema de medición y/o protección de vibración

Aplicación de la Norma ISO 14224 en sistemas CMMS para gestión de Activos

  • Protocolos para definición del Plan de Mantenimiento
  • Plan de Mantenimiento
  • Estándar Internacional ISO-14224
  • Sistemas de información para Gestión de Mantenimiento – CMMS
  • Administración de información de mantenimiento.
  • Limites jerárquicos de los equipos
  • Equivalencia taxonómica SAP-PM e ISO-14224.

Estándares de Planeamiento y Control de Mantenimiento

  • Formación del Comité de Análisis y Diagnostico.
  • Establecimiento de parámetros para evaluar el mantenimiento.
  • Elaboración y aplicación de cuestionarios.
  • Principios y reglas de investigación eficaz.
  • Grado de madurez del área de mantenimiento.
  • Establecimiento da la Matriz de Esfuerzos versus Impacto.

Administración del Mantenimiento

  • Identificación de los Activos.
  • Planificación y programación de mantenimiento
  • Plan / Programa maestro de mantenimiento
  • Las órdenes de trabajo, su evolución y metodologías de generación y recolección de registros
  • Los registros de materiales
  • Recolección de Datos de Mantenimiento

Gestión de Mantenimiento

  • Identificación de los Activos.
  • Planificación y programación de mantenimiento
  • Plan / Programa maestro de mantenimiento
  • Las órdenes de trabajo, su evolución y metodologías de generación y recolección de registros
  • Los registros de materiales
  • Recolección de Datos de Mantenimiento