Plant Hexcellence™ – Plant

In the previous article describing the Plant Hexcellence™ model, we started with people and just as we said that all change starts with the people, the purpose of that change revolves around the plant or assets themselves. Inherent with having a manufacturing company is having a manufacturing site and equipment to create the widget or product you are selling. Without the plant, there really is no need for the people or for any change.


The Plant Cell encompasses more than just physical assets–it also includes the methods, risk evaluation and mitigation strategies you’ll employ to keep your plant performing optimally.

This cell of the model will focus on your organization being able to answer:

  • What to maintain?
  • Why to maintain?
  • How to maintain?
  • When to maintain?
  • Who to maintain?
  • Where to document maintenance and action?
  • What are the costs involved?
  • What are the consequences of non-performance of maintenance?


Enterprise Asset Management / Computerized Maintenance Management System / Asset Management System.

Just as the human body has a backbone, then a manufacturing or heavy asset based organization needs an EAM/CMMS/AMS. For the purpose of this article we will use the term CMMS representing all of these types of systems as we are not trying to define the difference of each.

The CMMS creates the structure that you use to attach all information about an asset. It gives the ability to track the life of each asset and all that has happened to it as well as what was done to it. It is impossible recommend one CMMS system over another. Fit for purpose dictates that each company / organization has different operating context, business drivers and technical requirements. It also states that culture, process sophistication, technical backbone and budget play a major role in which type is right for the end user.

Risk-Based Criticality Analysis and Ranking

The CMMS may provide an organization the backbone, but the heart of reliability and asset management definitely belongs to the Risk Based Criticality Analysis. A wise man once said, “All assets are created equal, some are just more equal than others”. Its important to note that just creating or defining criticality is only half the story; you must add the risk factor to give any real definition to the asset management strategy. The criticality method and tool utilizes the business balance method that we have discussed previously: Safety, Environmental and Profitability. If any one of these three components is out of balance then the company or organization is at risk of going out of business. Just as all implementation and processes must be fit for purpose, so too are the tools. The criticality and risk evaluation process is a facilitated approach and no one individual should make all decisions. Even though there are predefined criteria in each of the classifications, tools easily define or alter the definitions to match current / existing definitions being utilized by the company or organization. It is important to note that all definitions should be supported or substantiated within regulatory bodies if applicable.

Safety – Plant Hexcellence uses the definitions within the API standards for safety. Class I through Class IV.

Environmental uses well de ned descriptions as listed by the OSHA Process Safety Management (PSM) Standards with a range from “no effect, no impact on the environment” to failure would cause “a major discharge or release requiring evacuation of personnel, Extensive clean up, immediate notifications and o -site impacts”

Profitability – Profitability is looked at from 3 perspectives. The first is a range of lost revenue as a result of down time measured in hours of down time. The second is the cost of repair, which includes the manpower and material to restore the asset/system back to original condition. The 3rd are fines, penalties or loss of the contract as a result of the down time condition from missing a dead line or having to ship short.

Additionally, Using a weighted logic behind these three components will deliver a raw criticality number, which can be tied to each asset within the CMMS.

The ranking of asset by risk is created by looking at the criticality of the asset and combining it to two weighted factors;

1. The current probability of failure on each asset or asset type that an organization is experiencing today. It is important to utilize the plants actual data as much as possible as what is occurring at that site could be drastically different from what is occurring at other sites or in industry in general.

2. The assessed physical condition of the asset. By utilizing this method, it is possible to rank all assets by risk. This risk ranking will be divided into sub groups that will be utilized to determine:

  • What is the appropriate mitigation strategy to create the Asset Management program and tasks?
  • What specific tasks are necessary to maintain the facility?
  • What is the resource requirement, timing and operation context for each task?
  • What is the total number of personnel required to execute the tasks to maintain the facility?
  • What skills are required of the personnel to accomplish the tasks and maintain the facility?
  • Better daily and weekly planning.
  • Foundation for the MRO sparing strategy.

NOTE: The risk-based criticality has more effect on long-term asset health and management than any other facet.

Once the risk ranking is established, levels or zones can be determined to apply PROPORTIONAL strategy and resources. The different strategies are listed below in an order of highest risk to lowest.

Mitigation strategies

• Reliability Centered Maintenance (RCM) – SAE Compliant RCM methodology to determine all asset functions and partial/complete loss of that function, consequence of the failure mode and Preventive / Predictive methods required to identify potential failure. This method is traditionally used on a small number of assets or systems. It is usually for very high risk: Safety of Life, Property or Environmental.

• Failure Modes Effects Analysis (FMEA) – Much faster than RCM. More readily used and recognized. Used on a large portion of assets in short time. It is the 80% answer to developing the PM program.

• Streamlined RCM – A shorter faster version of RCM. We view this at the same level in terms of risk mitigation as FMEA. This version of RCM does not take a zero based approach with each asset.

• Condition Based Maintenance (CbM) – This is exactly as the name implies. It is executing maintenance based on the asset’s condition versus time based. There are industry standards usually to support this method. i.e. You do not need to do an RCM/FMEA to know that electrical components and panels should have an Infrared scan annually at a minimum.

º Predictive Maintenance (PdM)
º Preventive Maintenance Inspection

• Maintenance Task Analysis (MTA) – A method of focusing RCM/FMEA principles on the lower / non-critical assets and components with concentration on known failure modes. Many times it is a modification of existing OEM PM programs but will also be applied to corrective maintenance practices.

Preventive maintenance program optimization

There are a number of methods in industry. This is taking an existing PM program and through a systematic method, reviewing all tasking to insure that it adds value and is still valid.

MRO inventory and spare parts

We have a plant so therefore we must have a warehouse full of spare parts to fix it when it breaks, Correct? That is not correct. All too often in many businesses, the warehouse has very little rhyme or reason as to what parts and in what quantity are in it? Very seldom is there a method to determine: How many parts should there be? When do I reorder? Should we add a part to the warehouse etc?

By industry data, the carrying cost of an asset sitting on the shelf in the warehouse is an unbelievable 30% of the original value annually. That being said, if an asset was $10.00 at purchase, then the site is paying $3.00 per year to have it on the shelf. That value is a conglomeration of Taxes, Handling fees, energy costs, personnel costs, obsolescence, disposal fees, etc.

You have to ask yourself, why do we even have a warehouse? Is it because we need to parts to fix the plant or is it really because we do not know when the plant or asset is going to fail?

Just as we have discussed above with using risk levels to determine proportional mitigation strategies for maintaining the assets, the same is true for the sparing strategy, which includes a sub set of a critical spares strategy.

  • Plan for Every Part (PFEP) – Manufacturing Excellence advocates have a plan for every part. This is two fold: 1. A plan for every asset that could fail. 2. A plan for every spare part.
  • Critical Sparing Strategy – As a subset of the MRO spares strategy, there must be a method, criteria or formula to determine what is a critical spare.
  • Inventory Accuracy – Best in class organizations maintain over 98% accuracy.
  • Max/ Min Calculations – Formula based with a subjective factor to determine consistently what is the right number of parts to maintain.
  • ABC Methodology – A method of determine fast and slow moving parts. ABC is defined as 80/15/5% respectively of spares from fast to slow moving spares.
  • Cycle count strategy and engagement that is relative to ABC methodology.
  • FIFO/LIFO – First in- First Out / Last in First our – To prevent using out of code or expired product. To prevent creating obsolescence on the shelf and having to dispose of product which requires repurchase and extensive disposal fees.
  • Warranties – it is common to see 1 in 20 organizations tracking warranties. The average savings or addition to the bottom line is between 2-3% of the asset inventory value.
  • Physical Asset Program – Is a comprehensive strategy looking at short and long term replacement of major capital assets. The strategy should include a 1,3,5 year budgeting cycle.
  • Asset Integrity Management Programs – Integrity refers to the integrity of the system not only from the physical containment (no leaks) but also from the integrity of being able to deliver the medium to all areas without breaks, interruption or delay. As necessary, the program must be compliant with OSHA – Process Safety Management (PSM).

Autor: Scott Kelley, CMRP
Managing Director
c: 713.962.1978

0 comentarios

Enviar un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Edición 29 Predictiva21

ver todas las ediciones

Suscríbete a Predictiva21

Síguenos en Linkedin

Sistemas de Indicadores (KPI) para Evaluar la Gestión del Mantenimiento

  • Sistemas de medición del desempeño en mantenimiento
  • Balanced scorecard y la gestión de mantenimiento
  • Indicadores técnicos de mantenimiento
  • Overall equipment effectiveness (OEE) y el mantenimiento
  • Indicadores de la SMRP y de la EFNMS- en 15341
  • Sistema jerárquico-funcional de indicadores para mantenimiento

Taller de Análisis de Criticidad (Detección de Oportunidades)

  • Fundamentos del Análisis de Criticidad
  • Pasos para la realización de un Análisis de Criticidad
  • Modelos Cuantitativos
  • Modelos Cualitativos
  • Modelos Probabilisticos
  • Selección de Matriz de Criticidad

Fundamentos Técnicos de Tribología y Lubricación

  • Conocer los fundamentos de tribología y lubricación, así como su uso y aplicación.
  • Importancia de la Lubricación para mejorar la confiabilidad en los procesos.
  • Conocer características de los diferentes productos empleados en lubricación y criterios de uso.
  • Conocimientos para facilitar un proceso de cambio en el enfoque de mantenimiento.
  • Identificar el vinculo Mantenimiento-Lubricación-Diseño.
  • Identificar que una adecuada Lubricación contribuye en ahorrar energía y reduce costos.

Auto Evaluación de Mantenimiento

  • Formación del Comité de Análisis y Diagnostico.
  • Establecimiento de parámetros para evaluar el mantenimiento.
  • Elaboración y aplicación de cuestionarios.
  • Principios y reglas de investigación eficaz.
  • Grado de madurez del área de mantenimiento.
  • Establecimiento da la Matriz de Esfuerzos versus Impacto.

Análisis de Costo de Ciclo de Vida LCC

  • Comprender la teoría del Análisis del Costo del Ciclo de Vida acorde a las normas ISO 15663 y UNE EN 60300-3-3 para la selección de alternativas económicas.
  • Evaluar el impacto económico de la Confiabilidad y de la Mantenibilidad en los costos de ciclo de vida de un equipo industrial.
  • Identificar los puntos de atención, barreras y debilidades relacionados con la utilización de las técnicas de Análisis del Costo del Ciclo de Vida y Evaluación Costo Riesgo Beneficio.
  • Determinar la Vida Útil Económica para decidir cuándo es el momento oportuno para reemplazar un activo físico instalado en una planta industrial.

Gestión y Optimización de Inventarios para Mantenimiento

  • Aspectos claves en gestión de inventarios
  • Clasificación de inventarios en mantenimiento
  • Análisis de Criticidad jerarquización de repuestos
  • Cantidad económica de Pedido
  • Indicadores en la Gestión de Inventarios

Generación de Planes Óptimos de Mantenimiento Centrado en Confiabilidad RCM

  • Fundamentos del MCC
  • Desarrollo del MCC
  • Beneficios del MCC
  • Desarrollo del AMEF
  • Generación de Planes de Mantenimiento

Planificación, Programación y Costos de Mantenimiento

  • Modelo de la Gestión de Mantenimiento
  • Sistemas indicadores de la Gestión
  • Planificación del Mantenimiento
  • El sistema de Orden de Trabajo
  • Análisis de Mantenibilidad
  • Programación del Mantenimiento

Técnicas de Análisis de Fallas y Solución de Problemas a través del Análisis de Causa Raíz RCA

  • Fundamentos del falla
  • Modos de falla
  • Tipos de falla
  • Análisis Causa Raiz
  • Tipos de ACR
  • Aplicación de ACR con Árbol Logico
  • Jerarquización de Problemas
  • Desarollo de Hipótesis
  • Evaluación de resultados

Análisis de Confiabilidad, Disponibilidad y Mantenibilidad (RAM)

  • Definiciones y conceptos.
  • Relación de un análisis RAM con la vida del activo.
  • Información requerida para realizar un análisis RAM.
  • Etapas para efectuar un análisis RAM.
  • Construcción del modelo en el análisis RAM.
  • Ajuste de distribuciones de probabilidad.
  • Incorporación de la opinión de experto.
  • Combinación de fuentes (Teorema de Bayes).
  • Simulación Montecarlo.
  • Análisis de Resultados.
  • Jerarquización de activos según criticidad.

Mantenimiento Productivo Total (TPM)

  • Evolución del mantenimiento.
  • Objetivos del TPM.
  • Eficiencia operacional global.
  • Pilares de sustentación del TPM.
  • Implementación del TPM.
  • Evaluación de la eficacia de los equipos.
  • Control administrativo (Las 5 S – housekeepig).

Introducción a la Confiabilidad Operacional

  • Los fundamentos de confiabilidad, así como su uso y aplicación.
  • Visión de Confiabilidad Operacional como estrategia para mejorar la confiabilidad en los procesos
  • Conocimientos para facilitar un proceso de cambio del enfoque de mantenimiento hacia un enfoque de Confiabilidad Operacional, que apunta hacia la reducción sistemática en la ocurrencia de fallas o eventos no deseados en los Sistemas.
  • Obtener criterios para aplicar la estrategia de Confiabilidad Operacional.
  • El diseño de estrategias y la selección de acciones técnicamente factibles y económicamente rentables en minimizar la ocurrencia de fallas.

Mantenimiento por Condición para Equipos Estáticos y Dinámicos (Mantenimiento Predictivo)

  • Mantenimiento por monitoreo de condición
  • Estimación de intervalos P-F
  • Costo riesgo beneficio
  • Planes de Monitoreo de Condición

Mantenibilidad y soporte a la Confiabilidad Operacional

  • Conocer conceptos que soportan el enfoque de Mantenibilidad.
  • Importancia de la Mantenibilidad para mejorar la confiabilidad en los procesos.
  • Entender y comprender los factores que influyen y afectan la Mantenibilidad en las operaciones.
  • Diferenciar función y funcionalidad para aplicar mejoras.
  • Identificar que una adecuada valoración de Mantenibilidad permite aumentar la rentabilidad.
  • Identificar el vinculo Mantenibilidad-Disponibilidad.
  • Mantenibilidad y los factores: personales, condicionales, del entorno organizacional y ambientales.

Análisis de Vibración Nivel I

  • Fundamentos de las vibraciones Mecánicas
  • Características de la vibración
  • Tipos de medición de vibración
  • Posición para medir vibración
  • Sistemas de monitoreo continuo y portátiles de vibración
  • Criterios para la selección de un sistema de medición y/o protección de vibración

Aplicación de la Norma ISO 14224 en sistemas CMMS para gestión de Activos

  • Protocolos para definición del Plan de Mantenimiento
  • Plan de Mantenimiento
  • Estándar Internacional ISO-14224
  • Sistemas de información para Gestión de Mantenimiento – CMMS
  • Administración de información de mantenimiento.
  • Limites jerárquicos de los equipos
  • Equivalencia taxonómica SAP-PM e ISO-14224.

Estándares de Planeamiento y Control de Mantenimiento

  • Formación del Comité de Análisis y Diagnostico.
  • Establecimiento de parámetros para evaluar el mantenimiento.
  • Elaboración y aplicación de cuestionarios.
  • Principios y reglas de investigación eficaz.
  • Grado de madurez del área de mantenimiento.
  • Establecimiento da la Matriz de Esfuerzos versus Impacto.

Administración del Mantenimiento

  • Identificación de los Activos.
  • Planificación y programación de mantenimiento
  • Plan / Programa maestro de mantenimiento
  • Las órdenes de trabajo, su evolución y metodologías de generación y recolección de registros
  • Los registros de materiales
  • Recolección de Datos de Mantenimiento

Gestión de Mantenimiento

  • Identificación de los Activos.
  • Planificación y programación de mantenimiento
  • Plan / Programa maestro de mantenimiento
  • Las órdenes de trabajo, su evolución y metodologías de generación y recolección de registros
  • Los registros de materiales
  • Recolección de Datos de Mantenimiento